
A Common Basis for Analytical Clutter
Representations

John E. Gray, Naval Surface Warfare Center Dahlgren Division

Keywords: Analytical Clutter Model, Probability Density
Function, Phase Noise

SUMMARY & CONCLUSIONS

In order to understand the problems intractable problems
nature presents us, we are forced to make simplifications till
we arrive at simple analytical models that we are capable
of understanding. Such canonical models are rare, but useful
as tools for constructing more realistic models that we can
use analyze nature. The class of analytical models for clutter
analysis limited to those that consist of various amplitude
models with the phase noise assumed to have a probability
density function that is uniformly distributed. These analytical
models can be extended by relaxing the assumption of uniform
phase noise to phase noise with non-uniform distributions. It
is shown how to determine the probability density function
for these non-uniform distributions in general and then the
method is illustrated with such distributions as Gaussian,
Laplacian, and Chi-squared. This enables one to determine
the probability density functions of the individual components
of clutter model such as x̂t = v̂t cos(φ̂c).

Using the rule for determining the products of distributions,
we show that the functional form for x̂t is reduced to eval-
uating integrals that reduce to elliptical functions. Once the
functional form has been determined, it is easy to determine
the moments of the PDF and hence completely characterize
its statistics.

1. INTRODUCTION

Analytical clutter models have proven useful in both the
design and analysis of moving target indicators (MTI) and
pulse Doppler (PD) radars. Usage of them to represent ran-
dom clutter enables one to predict some aspects of system
performance analytically, which is always useful as means of
testing simulations and to provide sanity checks for ones data
[1], [2]. It is not generally realized that most clutter models
can be cast in the form

ĉt = v̂t cos(ωct + φ̂c) (1)

where "hat" denotes random variable, ĉt � distributed clutter
process that is assumed to be strict sense stationary, v̂t �
clutter envelope process, ωc � clutter frequency, φ̂c � phase
noise process (which we assume is not uniform). (I will refer

to this as the communication model throughout the paper.) If
we define

x̂t = v̂t cos(φ̂c), (2)

and
ŷt = v̂t sin(φ̂c), (3)

the clutter process can also be represented as

ĉt = x̂t cos (ωct) − ŷt sin (ωct) . (4)

If we take v̂t to be a zero mean process with a variance σ2, and
assume the phase noise is not a random process, then this is the
standard Gaussian process with the clutter being independent
of the time origin. Thus the Gaussian clutter process is a
special case of the communication model. Similarly the Rician
Clutter model is just the Gaussian model with a scatter (S)
added to the mixture. The log-normal clutter model is to
take the communication model for clutter with the envelope
probability distribution taken to Rayleigh distributed and the
phase noise taken to be uniformly distributed. Other models
of the amplitude that have been used include the Weibull
representation and the K-distribution. The problem with these
approaches to analytical clutter is they treat the amplitude
differently, but the not the phase. All analytical models assume
that the phase noise is uniformly distributed. This is clearly
not the case, but there has been no method that overcomes this
difficulty. In this paper we propose a method for characterizing
non-uniform phase noise, so one can determine the phase
noise clutter distribution and then use this with a desired
amplitude distribution determine better analytical models for
clutter. We note that the analytical clutter determination using
the communication model of clutter is a special instance of
the Rayleigh Problem [4], [4], [5] originally arose in Lord
Rayleigh’s investigations into scattering acoustical waves off
of rough surfaces. The problem was to evaluate the PDF of
the random sums such as

X̂ =
N∑

i=1

x̂i =
N∑

i=1

âi cos(θ̂i). (5)

2. DETERMINATION OF PROBABILITY DENSITY
FUNCTIONS USING CHARCTERISTIC FUNCTIONS

The communication model of clutter is the N = 1 instance
of the Rayleigh problem. In many engineering applications,
difficulty occurs when we have a change of variables. We know
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the distribution of the original random variable x̂, but we have
to deal with a change of variables ŷ = f(x̂), so we are trying
to cope with a design based on knowledge of x̂ rather than
ŷ which is what we actually need. A method for finding the
underlying probability distribution for ŷ is to use characteristic
functions. The definition of a characteristic function (CF) for
a density P (x) is

MP (θ) =
〈
eiθx

〉
=

∫ ∞

−∞
eiθxP (x) dx (6)

which can also be interpreted as the expected value or average,〈
eiθx

〉
, of eiθx (see [?] for a thorough discussion of CF’s). The

CF has the properties:

1) M(0) = 1.
2) M∗(−θ) = M(θ).
3) |M(θ)| ≤ 1.
4) |M(θ)| ≤ M(0).
There are several methods for defining the Fourier transform

of a function that are used in the literature; all involve the
placement of the factor 2π that always occurs when using the
Fourier transform. We use the asymmetric form that is found
in Bracewell, Papoulis, and others. If we adopt the Hilbert
space notation for the inter-product of two functions (where ∗
denotes complex conjugate)

〈f(t), g(t)〉 =
∫ ∞

−∞
f∗(t)g(t) dt, (7)

then the Fourier transform of a function f(t) can be defined
in Hilbert space notation as

F (ω) =
〈
e−iωt, f(t)

〉
=

∫ ∞

−∞
eiωt f(t) dt. (8)

The inverse Fourier transform of a function F (ω) is defined
as

f(t) =
1
2π

〈
eiωt, F (ω)

〉
=

1
2π

∫ ∞

−∞
e−iωt F (ω) dω. (9)

Also, note the definition of the Dirac delta function in this
notation is

δ(t) =
1
2π

〈
eiωt, 1

〉
=

1
2π

∫ ∞

−∞
e−iωt dω. (10)

Note the definitions and results we use are consistent with the
various Papoulis books with i = −j as the translation device.

In many engineering applications, difficulty occurs when we
have change of variables. If one has a random variable x̂ with
a density P (x), one would often like to know the density of
a new variable, say û, that is a function of the old variable

û= f(x̂). (11)

The standard method for solving this type of problem is found
in [7]. Assume knowledge of the characteristic function is
known, then the distribution can be obtained by inversion. The
characteristic function is the expected value of eiω f(x)

Mu(ω) =
〈
eiωf(x)

〉
=

〈
e−iωf(x), Px(x)

〉
. (12)

Now if we substitute this definition of Mu(ω) into the defin-
ition of P (x) gives

Pu(u) =
1
2π

〈
eiωu,

〈
eiωf(x), Px(x)

〉〉
(13)

which upon rearrangement of the order of integration gives

P (u) =
1
2π

〈〈
eiωue−iωf(x), 1

〉
, Px(x)

〉
(14)

follows from the definition of the delta function [8] that

δ (u − f(x)) =
1
2π

〈
eiω(u−f(x)), 1

〉
(15)

so
P (u) = 〈δ (u − f(x)) , Px(x)〉 . (16)

Now one of the properties of the delta function is [9]

δ (g(x)) =
∑

i

δ(x − xi)
1

|g′(xi)| (17)

were the x′
is are the solution to g(xi) = 0, e.g. the zeros of

g. Now for our problem, g(x) = f(x) − u, the derivatives of
g is the derivative of f , so we have

δ(f(x) − u) =
∑

i

δ(x − xi)
1

|f ′(xi)| . (18)

Thus the expression for the density function becomes

P (u) =
∑

i

P (xi)
|f ′(xi)| . (19)

If f is single valued, then the solution is particularly simple.
The transformation ŷ = R sin(ϕ̂) a PDF fϕ(ϕ) is onto

but not one-to-one over the interval [−∞,∞]. Thus it has an
infinite number of zeros. It is more convenient to determine
the CF directly, so the Fourier transformation of the PDF is

Mϕ(ω) =
〈
eiωR sin(ϕ), fϕ(ϕ)

〉
. (20)

The exponential can be written as
∞∑

n=−∞
Jn(ωR)ejnϕ = eiωR sin(ϕ), (21)

so the CF is given by [10],[11]

Mϕ(ω) =
∞∑

n=−∞
Jn(ωR)

〈
einϕ, f(ϕ)

〉
=

∞∑
n=−∞

Jn(ωR)F (n);

(22)
where where F (n) is the Fourier transform of the PDF for the
angle variable fϕ(ϕ) which is evaluated n. Noting the Bessel
functions can be rewritten as (J−n(x) = (−)nJn(x)), we have

M sin
ϕ (ω) = J0(ωR)Fs(0) +

∞∑
n=1

Jn(ωR)S(n) (23)

where S(n) = [F (n) + (−)nF (−n)]. If F (n) is even or odd,
this formula can be simplified further. For the transformation
x̂ = R cos(ϕ̂) = R sin(ϕ̂− π

2 ), which amounts to replacing ϕ
by ϕ − π

2 in the exponential, so the CF is

M cos
ϕ (ω) = J0(ωR)F (0) +

∞∑
n=1

Jn(ωR)C(n). (24)
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where C(n) = [(−)nF (n) + F (−n)]. The expressions for
C(n) and S(n) can be simplified further if the functions are
even or odd.

The expression for the moments of the characteristic func-
tion can be expressed as the derivative of the CF,

〈xm〉 =
1
im

∂mMP (ω)
∂ωm

∣∣∣∣
ω=0

(25)

so

〈xm〉 =
Rm

im
2m{S(p)/C(p)}J(m)

p (ωR)
∣∣∣∣
ω=0

. (26)

To determine 〈xn〉 requires us know the n-th derivative of
the Bessel function since the characteristic function for phase
noise always have Bessel function components. Since J0(0) =
1 and Jn(0) = 0 for n �= 0, the only terms that remain after
we take the derivative with respect to ω and set it equal to
zero are those Bessel functions that have zero coefficients,
e.g. those of the form Jp−m(x) which are one when p = m.
allows us to determine the moments to arbitrary order. Three
examples of distributions are:

1) Gaussian or Normal Distribution: The PDF of the zero
mean normal distribution has a CF given by

1√
2σ2

θπ
e
− x2

2σθ2 ⇔ e−σ2
θω2/2

thus F (n) = e−σ2
θn2/2

(27)

which is even. Note the mean is zero and the second
moment for either transformation is〈

x2
〉

=
R2

2

[
1 − e−2σ2

θ

]
. (28)

The third moment is zero, and the fourth moment for
either transformation is〈

x4
〉

=
∂4Mϕ(ω)

∂ω4

∣∣∣∣
ω=0

=
R4

8

[
e−8σ2

θ − 4e−2σ2
θ + 3

]
For non-zero mean Gaussian, the CF is√

2
π2σ2

θ

e−ω2σ2
θ/2e−iωθ0 (29)

thus
F (n) = e−n2σ2

θ/2e−inθ0, (30)

Note the mean is

〈x〉 = 2e−σ2
θ/2 [cos θ0] R, (31)

so the second moment is〈
x2

〉
=

R2

2

[
1 − e−2σ2

θ cos (2θ0)
]
. (32)

while the fourth moment is for either transformation〈
x4

〉
=

R4

8

[
e−8σ2

θ cos(4θ0) − 4e−2σ2
θ cos(2θ0) + 6

]
.

(33)
2) Laplace Distribution: The PDF’s CF is

α

2
e−α|x| ⇔ α2

α2 + ω2
, (34)

thus

F (n) =
α2

α2 + n2
, (35)

which is even. Note the mean is zero and the second
moment is 〈

x2
〉

=
R2

2

[
1 − α2

α2 + 4

]
, (36)

while the fourth moment is〈
x4

〉
=

R4

8

[
α2

α2 + 16
− 4

α2

α2 + 4
+ 6

]
. (37)

3) Chi Squared χ2(n): The PDF’s CF is

xm/2−1

2m/2Γ(m/2)
e−x/2Θ(x) ⇔ 1

(1 − 2iω)m/2
, (38)

where

Θ(x) =
{

1 x ≥ 0
0 x < 0 , (39)

thus
F (n) =

1

(1 − 2in)m/2
. (40)

Note that the mean is

〈x〉 = i

[
1

(1 + 2i)m/2
− 1

(1 − 2i)m/2

]
R (41)

and the second moment is〈
x2

〉
=

[
2 − 1

(1 − 4j)m/2
− 1

(1 + 4i)m/2

]
R2. (42)

From the characteristic function, we can determine the
PDF of the transformation ŷ = R sin(θ̂) by using a Fourier
transform identity found in [12] which enables us to determine
the PDF of the sinusoidal transforms from the expression for
Mϕ(ω) to give

f sin θ
y (y) =

2
π

[
F (0) +

∑∞
n=1 Usin(θ)(n)Tn( y

R )
]√

(1 − (
y
R

)2)
Θ(1 −

∣∣∣ y

R

∣∣∣)
(43)

where

Usin(θ)(n) = [F (n) + (−)nF (−n)] (−i)n. (44)

and Tn(·) are the Chebyshev polynomials. The PDF of the
transformation ŷ = R cos(θ̂) is

f cos θ
y (y) =

2
π

[
F (0) +

∑∞
n=1 Ucos(θ)(n)Tn( y

R )
]√

(1 − (
y
R

)2)
Θ(1 −

∣∣∣ y

R

∣∣∣)
(45)

where
Ucos(θ)(n) = [(−)nF (n) + F (−n)] . (46)

To determine the PDF from a given characteristic function, we
merely substitute the particular F (n) and we have the under-
lying PDF for sinusoidal transformations for any distribution.

3. TWO DIMENSIONAL PDF’s FOR ANALYTIC CLUTTER
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Since clutter results from scattering off a rough surface,
there are four possibilities to consider for either clutter or
scattering:

1) All the amplitudes are deterministic and individual ran-
dom phase angles are the same type of distribution with
different means and variances,

2) All the amplitudes are deterministic and individual ran-
dom phase angles have different distributions,

3) All the amplitudes are random with he same type of
distribution with different means and variances and
individual random phase angles are the same type of
distribution with different means and variances,

4) All the amplitudes are random with he same type of
distribution with different means and variances and
individual random phase angles are phase angles have
different distributions.

Once one has the individual ẑ, then one has to determine
the PDF of N random sums

Ẑ = ẑ1 + ẑ2 + ... + ẑN . (47)

To evaluate such sums, it suffices to calculate them two-fold
at a time, so sums such as ẑ12 = ẑ1 + ẑ2, with distributions
Pz1(z1) and Pz2(z2) (assuming they are uncorrelated), then
the distribution of ẑ which is denoted by Pz(z) is

Pz(z) =
∫ ∞

−∞
Pz1z2(z1, z − z1) dz1

=
∫ ∞

−∞
Pz1(z1)Pz2(z − z1) dz1 (uncorrelated) (48)

To compute the PDF of Ẑ, we just continue the process

ẑ123 = ẑ12 + +ẑ3, (49)

so
Ẑ = ẑ123...N−1 + ẑN . (50)

In principle the problem is solved provided the PDF for fz(z)
can be calculated so one can then calculate Pz(z). Calculations
of convolution of Chebyshev polynomials are not difficult, so
we can calculate,all of these sums.

Note if one is solely concerned with the first and second
moments of the distributions, the individual distributions can
be used to compute the collective means and standard devi-
ations for Ẑ. For the Gaussian distribution, the mean is zero
and the second moment is (where we have replaced R with
the amplitude A) 〈

x2
〉

= 2A2
(
1 − e−2σ2

θ

)
(51)

Thus for case 1 we have〈
Z2

〉
= 2NA2

(
1 − e−2σ2

θ

)
, (52)

for case 2 we have〈
Z2

〉
= 2NA2 − 2A2

N∑
i=1

e−2σ2
θi , (53)

for case 3 we have〈
Z2

〉
= 2

(
1 − e−2σ2

θ

) N∑
i=1

A2
i , (54)

and for case 4 we have〈
Z2

〉
= 2

N∑
i=1

A2
i

(
1 − e−2σ2

θi

)
. (55)

Note when the mean is not zero, we have

〈Z〉 = 2e−σ2
θ/2 [cos θ0] A, (56)

and the second moment is〈
Z2

〉
= 2

[
1 − e−2σ2

θ cos (2θ0)
]
A2. (57)

and we replace the previous cases with e−2σ2
θ cos (2θ0) for

e−2σ2
θ with the proper index as necessary. State of the art signal

processing requires using statistics beyond second order so that
requires returning to PDF’s of the scatters and evaluating their
convolutions.

Now we know the functional form for the sinusoidal trans-
form is either (43) or (44). For the last two cases we need
the formula for the density function for the product of two
random variables ẑ = ŝt̂ which is given by

fz(z) =
∫ ∞

−∞

1
|w|fst(w,

z

w
) dw ≡

∫ ∞

−∞

1
|w|fs(w)ft(

z

w
) dw,

(58)
when s and t are independent. (Note, by symmetry, it doesn’t
matter which order of labeling, s or t one chooses in the
integral.) It does matter whether we use sine or cosine since
once one integral is evaluated the other can be evaluated
in terms of the first, so the cosine is considered in the
remainder of the paper. The probability density function for
the transformation z = â cos

(
θ̂
)

is (fa(w) is the PDF for â)

fz(z) =
2
π

∫ 1

−1

[
F (0) +

∑∞
n=1 Ucos(θ)(n)Tn(w)

]
|w| √1 − w2

fa(
z

w
) dw.

(59)
There are two limiting cases for fa(w) that are of particular
interest, a uniformly distributed amplitude

fa(w) =
1
2a

Θ
(
1 −

∣∣∣w
a

∣∣∣) (60)

and a normally distributed amplitude

fa(w) =
1√

2πσ2
a

exp
(
− w2

2σ2
a

)
. (61)

For the uniformly distributed amplitude

fz(z) =
F (0)
πa

∫ 1

−1

Θ
(
1 − ∣∣ z

aw

∣∣)
|w| √1 − w2

dw

+.

∑∞
n=1 Ucos(θ)(n)

aπ

∫ 1

−1

Tn(w)Θ
(
1 − ∣∣ z

aw

∣∣)
|w| √1 − w2

dw.(62)

Now the first integral is even, and it can be evaluated in closed
form [13] 341.01∫

1
|x|√b2 − x2

dx = −1
b

log

∣∣∣∣∣b +
√

b2 − x2

x

∣∣∣∣∣ .

First note that Tn(−w) = (−)n
Tn(w), and [14]

Tn(x) =
[n/2]∑
k=0

c
(n)
k xn−2k (63)
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where

c
(n)
k = (−)k 2n−2k−1 n

n − k

(
n − k

k

)
. (64)

Now the definition of the beta function is

B(m,n) =
∫ 1

0

xm−1(1 − x)n−1dx (65)

while definition of the gamma function is

Γ(m + 1) =
∫ ∞

0

xme−xdx, (66)

so

B(m,n) =
Γ(m)Γ(n)
Γ(m + n)

. (67)

The definition of the incomplete beta function is

Bu(a, b) =
∫ u

0

xa−1(1 − x)b−1dx Re(a) > 0 (68)

while the complementary incomplete beta function is

Bc
u(a, b) =

∫ 1

u

xa−1(1 − x)b−1dx Re(a) > 0 (69)

so
Bu(a, b) + Bc

u(a, b) = B(a, b). (70)

Then the integral is expressible in terms of the complementary
incomplete beta function as∫ 1

a
z

w2m−2k−1

√
1 − w2

dw = Bc
a
z

(
m − k − 1,

1
2

)
. (71)

The PDF for an arbitrary phase noise and uniform amplitude
noise follows from these integrals and is

fz(z) =
F (0)
πa

log

∣∣∣∣∣z +
√

z2 − a2

a

∣∣∣∣∣ + (72)∑∞
m=1 Ucos(θ)(2m)

∑[m]
k=0 c

(2m)
k Bc

a
z

(
m − k − 1, 1

2

)
aπ

(73)

For the normally distributed amplitude, the PDF is

fz(z) =
2F (0)

π
√

2πσ2
a

∫ 1

0

exp
(
− z2

2w2σ2
a

)
w
√

1 − w2
dw +

∑∞
n=1 Ucos(θ)(n)

π
√

2πσ2
a

∫ 1

−1

Tn(w) exp
(
− z2

2w2σ2
a

)
dw

|w| √1 − w2
.(74)

The definition of the incomplete gamma function is

Γz(m + 1) =
∫ z

0

xme−xdx, (75)

while the definition of the complementary incomplete gamma
function is

Γc
z(m + 1) =

∫ ∞

z

xme−xdx, (76)

so
Γz(m + 1) + Γc

z(m + 1) = Γ(m + 1) (77)

Now the first integral in the PDF can be evaluated as (k(z) =
z2

2σ2
a

)

∫ 1

0

exp
(
− z2

2w2σ2
a

)
w
√

1 − w2
dw (78)

=
1
2

∞∑
n=0

(−)n
(2n − 1)!!Γc

k(z)(n + 1
2 )

(2n)!!k(z)n+ 1
2

(79)

=
1
2

∞∑
n=0

(−)n (2n − 1)!!
(2n)!!

R(n, k(z)) (80)

The second integral can be expressed as∫ 1

−1

Tn(w) exp
(
− z2

2w2σ2
a

)
dw

|w|√1 − w2

=
1
2

∞∑
m=1

(4m − 1)!!H(m, k(z))
(4m)!!k(z)2m+ 1

2
(81)

where

H(m, k(z)) =
[m]∑
l=0

c
(2m)
l

k(z)l
Γc

k(z)(l + n − m +
1
2
)

since it is even. Thus, PDF for an arbitrary phase noise and
Gaussian amplitude noise follows from these integrals and is
given by

fz(z) =
F (0)

π
√

2πσ2
a

∞∑
n=0

(−)n (2n − 1)!!
(2n)!!

R(n, k(z))

+.

∑∞
m=1 Ucos(θ)(2m) (4m−1)!!H(m,k(z))

(4m)!!k(z)2m+1
2

2π
√

2πσ2
a

(82)

We have shown it is possible to determine the PDF for specific
models of amplitude noise and arbitrary phase noise. From
these expressions, one can work out either the moments or
the characteristic function of the distributions. Once the PDF
has been determined for ẑ , sums can be considered. Let us
consider the two sum case for each of these possibilities and
see what conclusions we can draw. For the two sum case Ẑ =
ẑ1 + ẑ2, we know the PDF of Ẑ is

PZ(z) (uncorrelated)=
∫ ∞

−∞
Pz1(z1)Pz2(z1 − z) dz1. (83)

Thus our ability to determine PZ(z) depends on our ability
to evaluate for either sine or cosine integrals of the form so
our anzatz for the general case applies by computing the sums
two-fold at a time. Details of these calculations and explicit
determination of the moments will be considered in a future
paper.
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